当前位置:首页 > PC教程 > 正文

关于Matlab化简表达式/多项式的操作教程方法。

关于Matlab化简表达式/多项式的操作教程方法。

借助Matlab符号计算过程里,其结果显得繁冗,当中一个非常重要原因就是:计算结果里有些表达式会多次出现在不同地方。为使表达式简便,这里小编给大家分享了Matlab...

  借助Matlab符号计算过程里,其结果显得繁冗,当中一个非常重要原因就是:计算结果里有些表达式会多次出现在不同地方。为使表达式简便,这里小编给大家分享了Matlab化简表达式/多项式的操作教程,不要错过哦。

  相关指令简介

  这儿介绍下采用公因子发简化表达式的相关置换指令。气质要的函数指令为:“subexpr”。subexpr是替换表达式命令。在很多特繁琐的解析表达式中,常有个在不同地方重复出现的表达式,此时用simple或simplify都无法化简,而用这个命令就能得到效果很好的简化结果。下面说下subexpr指令的语法规则:

  RS=subexpr(expr) expr为表达式,其表示从expr中提取出公因子sigma,并且将采用sigma重写的expr表达式赋给RS;

  RS=subexpr(expr,'s') 从expr中提取出公因子,记为S,并将用S重写的expr赋给RS;这里能指定公因子的名称为'S'

  [RS,s]=subexpr(expr,'s') 该调用语法的效果和上一句“RS=subexpr(expr,'s')”是一样的。

  注意,expr可以是符号表达式或符号表达式矩阵。此外还可以应用help指令学习subexpr的用发,结果如下图:

s.jpg

  公因子法简化表达式

  至于用公因子法简化表达式,采用对符号矩阵A=[ a b;c d]进行特征向量分解的实例来演示,以演示cubexpr的正确用法,实例演示复杂符号矩阵的公因子法化简。这里我们需要生成符号矩阵。如图所示:

S.png

  特征值和特征向量

  当生成符号矩阵后,就需对上一步的符号矩阵进行特征之和特征向量分解。这里我们要用到“eig”函数,其用法是:[V,D]=eig(A),求矩阵A的全部特征值,构成对角阵D,并求A的特征向量构成矩阵V。下面就用这条指令求第二步符号矩阵的特征值和特征向量,如图所示:

s1.jpg

  自动识别表达式中的公因子

  下面开始使用subexpr函数指令进行公因子识别了,注意subexpr函数的具体应用哦!这里先使用一下第一步用法中的第一条,具体如图所示:

s1.png

  对D进行“指定公因子名称”的简化

  下面探索一下subexpr函数指令的另一个用法,即对提取的公因子制定名称,即把从D中提取出的公因子命名为s,然后用s重写的D赋给Ds;这里能指定公因子的名称为's'。代码:Ds=subexpr(D,'s') ;具体如图所示:

ss.jpg

  对V、D同时简化,并且制定相同的公因式名称

  下面将V、D合成为一个矩阵,然后同时对矩阵[V;D]提取公因式,这时将公因式命名为w,并用w重写矩阵[V;D]并命名为VDw。代码指令:[VDw,w]=subexpr([V;D],'w') ,具体结果如图所示:

ss.png

  学完本文Matlab化简表达式/多项式的操作内容,是不是觉得以后操作起来会更容易一点呢?

最新文章